

Assembler Programming Part II

Page 1 of 4

Duration: 5 Days

Audience:

Application Programmers with little or no previous experience in Assembler who
require formal training in the basic language features and programming
techniques.

Pre-requisites:

An understanding of computer concepts is assumed.

A working knowledge of TSO/ISPF is required. This can be gained from our z/OS
TSO/ISPF Workshop.

Course Objectives

Each delegate will enhance their working knowledge of Assembler as this course
builds on the topics from Assembler Programming Part I. Good programming
practice is encouraged throughout. The course covers a range of topics useful in
creating more complex programs and furthers learning with 40 hands on
assignments until delegates are capable of complex programming logic and
design.

Course Content

Module 1: Assembler Programming Part I revision

AMODE vs RMODE plus a list of instructions

Module 2: Diagnostic Aids

Types of termination
Forcing an S0C1 Abend
More information on the SNAP macro
Forcing a User ABEND (U0001-U3999)
Trapping program interrupts – SPIE and ESPIE macros
Trapping System Abends – STAE, ESTAE and ESTAEX macros
SETRP Macro

Module 3: More Decision Making

Why return codes are multiples of 4
Branch tables
EX instruction

Assembler Programming Part II

Page 2 of 4

Branch on Index High – BXH instruction
Branch on Index Low or Equal – BXLE instruction

Module 4: Static Sub-routines

Retrieving information from the EXEC statement PARM operand
Internal sub-routines – BAL, BALR, BAS, BASR and BR instructions
External sub-routines – CALL macro
How to return from an external sub-routine
Passing parameters to an external sub-routine
The role of the Linkage Editor / Program Binder
Linkage Editor DD statements
Common Linkage Editor statements – ENTRY, INCLUDE and NAME
Common Linkage Editor PARM options – LET, LIST, MAP and NCAL

Module 5: Dynamic Sub-routines

The differences between CALL, LINK, LOAD and XCTL macros
Dynamic invocation with return – CALL, LINK and LOAD macros
Dynamic invocation without return – XCTL macro
DELETE Macro
Changing AMODE in-flight

Module 6: Sub-Tasks

Concepts of sub-tasking
Creating a sub-task – ATTACH and ATTACHX macros
Deleting a sub-task – DETACH macro
STATUS Macro
Synchronizing tasks – ECB, POST and WAIT macros
CS Instruction

Module 7: Boolean Instructions

Instruction types
Basic definitions – AND, OR and Exclusive OR
Register to Register (RR-type) – NGR, NR, OGR, OR, XGR and XR instructions
Register to Memory (RX-type) – NG, N, OG, O, XG and X instructions
Immediate instructions (SI-type) – NI, OI, and XI instructions
Storage to Storage (SS-type) – NC, OC and XC instructions
Checking bit settings – TM instruction

Assembler Programming Part II

Page 3 of 4

Module 8: Shift Instructions

Single shift arithmetic instructions
Single shift logical instructions
Double shift arithmetic instructions
Double shift logical instructions

Module 9: BSAM and BPAM I/O

Access Methods
BSAM vs QSAM
OPEN macro
Read a block of data – READ macro
Write a block of data – WRITE macro
Handling short blocks both in and out
Validating the I/O – CHECK macro
CLOSE macro
Defining the data set – DCB Macro (both input and output)
Additional BPAM requirements – FIND and STOW macros

Module 10: VSAM Processing

Cluster processing – OPEN, GET, PUT and CLOSE Macros
File definition – ACB, EXLST and RPL Macros
Sundry other macros – ENDREQ, GENCB, MODCB and SHOWCB

Module 11: Memory Management

What does it mean
What is a sub-pool
Acquiring areas of memory – GETMAIN and STORAGE macros
Releasing areas of memory – FREEMAIN and STORAGE macros

Module 12: Language Environment (LE)

Register conventions
Mandatory macros – CEECAA, CEEDSA, CEEENTRY, CEEPPA, and CEETERM
Additional macros – CEEFETCH, CEELOAD, CEEPCAL and CEERELES
AMODE and RMODE implications

Module 13: Macro Basic Concepts

Naming the macro – MACRO statement
Defining the macro attributes – Prototype statement
Creating the macro logic – Model statements

Assembler Programming Part II

Page 4 of 4

Terminating the macro – MEND statement
Issuing messages from the macro – MNOTE statement
Aborting a macro – MEXIT statement
Additional statements – AEJECT, AINSERT, AREAD, ASPACE and COPY
Macro placement

Module 14: Variable use in Macros

Symbolic parameter both Keyword and Positional
Sub-parameter lists
Symbolic parameter concatenation
Available System Symbols
Significance of special characters

Module 15: Conditional Assembly

Its functionality and components
Declaring local symbols – LCLA, LCLB and LCLC statements
Declaring global symbols – GBLA, GBLB and GBLC statements
Assigning values – SETA, SETB and SETC statements
Sequence symbols
Branching – AIF, AGO and ANOP statements
Iterative processing – ACTR statement

Module 16: Data Spaces

Data Space vs Hiperspace
Access Registers
Access Lists
Setting an Access Register – CPYA, LAE, LAM and SAR instructions
Create a Data Space
Make the Data Space Addressable
Populate the Data Space
Using macros in AR mode – SYSSTATE macro
Deleting a Data Space
Other Data Space management options

Module 17: Re-Entrant Code

What is re-entrant code and what are its benefits
Avoid in-line parameter lists generated by macros
Use external data areas – STORAGE macro
Let the assembler check for validity – RSECT statement

